Programmable Architecture

-Towards Human Interactive, Cybernetic Architecture-

Kensuke Hotta (B.Eng, M.Eng, Msc)
Architectural Association School of Architecture, 2013

プログラマブル アーキテクチャ


堀田憲祐, 英国建築協会建築学校 


Statement of the Art/Background



2-1. Introduction


In this chapter, various precedents are considered both in reviewing what has led up to the contemporary situation as well as the latest developments. These include developments from different academic fields such as Architecture, Engineering, Computer Science, Psychology, and Art. The precedents are used not only as case studies but their methodologies can be applied to 'Programmable Architecture', the theme of this thesis.


2-2. From Architecture


2-2-1 . Cedric Price and the Japanese Metabolism Movement


With reference to temporal design linked with the idea of emergence, it is worth looking at the Fun Palace Plan, Plug-in City in the United Kingdom, and the Metabolism Movement in Japan in the 1960s and 70s (Lin, 2010). The emergent idea in this context is that the architect and designer designed ‘systems’ rather than depicting static images. This, in turn, led to an unexpected range of behaviours even after the building was built. The actual user would control how to use the structure. For example, in a capsule-based plug-in system, the residents would decide how to manage the capsules or components. (Auther note; need new discussion). From the outside, this development looks like a living system which is acquiring emergent behaviour. However, so far, these movements have not been successful in solving social and architectural problems. Because of various limitations such as cost, a building’s lack of portability, and a lack of an evaluation system (explained below), Metabolism never achieved large-scale success. 


     These ideas, first suggested by Cedric Price (Price, 1969) at the time of Britain’s total dissolution of the planning system in the late 1960s, were clearly unworkable. Already in the 1960s, in his counterattack to planning orthodoxy in his article ‘Non-plan’ (Price, 1969) and in his article ‘Activity and Change’ (Price, 1962), he shows an awareness of ‘time’.

“An expendable aesthetic requires no flexibility in the artefact but must include time as an absolute factor. Planned obsolescence is the order within such a discipline - shoes; motor cars; magazines.”

                         -Price, 1962

His time-based urban interventions have ensured that his work has an enduring influence on contemporary architects, though he built little. He frequently used the phrase ’Do you really need a building?’ rather than ‘What kind of building do you need?’. These stories reveal that his architectural concept is concerned with human activities.

 英国では「都市や建築の計画」することが1960年代後半に崩壊していた、セドリック・プライス(Price、1969)によって最初に提案されたこれらのテンポラルな計画のアイデアは、明らかに実現不可能であった。すでに1960年前後に、ある記事、「Non-plan」(1969年)と「Activity and Change」(1962年)において、正統的に計画することへのカウンターアタックとして、プライスは計画における「時間」への関心を示している。かれは、その中でこう述べている。

                          -Price, 1962


Fig 2-2-1,1 Fun Place plan by Cedric PriceOne of his famous unbuilt works ‘The Fun Palace’ in 1961, initiated with Joan Littlewood, established him as one the most innovative architects of the period. Based on the slogan ‘laboratory of fun', the idea was to make facilities for dancing, music, drama and fireworks. Central to Price's practice was the belief that through the correct use of new technology the public could have unprecedented control over their environment, resulting in a building which could be responsive to visitors' needs and the many activities intended to take place there. Using an unenclosed steel structure, fully serviced by travelling gantry cranes the building comprised a ‘kit of parts': prefabricated walls, platforms, floors, stairs, and ceiling modules that could be moved and assembled by the cranes. Virtually every part of the structure was variable. As the marketing material suggested, there was a wide choice of activities. (1964: Fun Palace, Canadian Centre of Architecture,
図2-2-1,1セドリック・プライスによる「ファンパレス計画」彼の有名なアンドビルド作品、ジョアンリトルウッドと始めた1961年の「ファンパレス」は、彼をその時代の最も革新的な建築家の1人として確立させた。「楽しさの実験室」というスローガンに基づいて、ダンス、音楽、演劇、花火のための施設を作るというアイデアであった。プライスの取り組みの中心は、新しいテクノロジーを正しく使用することで、一般の人々がいままでにないような環境コントロールを行えるようになり、その結果建築空間が訪問者のニーズや活動に対応できようになる、という信念であった。その提案する建物は、密閉されていない鉄骨構造で、移動式ガントリークレーンが完備されている。クレーンで移動および組み立て可能な「部品キット」で構成されていた。それは事前に製造された壁、プラットフォーム、床、階段、天井などのモジュールなどである。実質的に、構造を含むすべてのパーツが変動可能である。マーケティング資料が示すように、幅広い活動の選択肢があった。1964: Fun Palace,カナダ建築センター

“Choose what you want to do – or watch someone else doing it. Learn how to handle tools, paint, babies, machinery, or just listen to your favourite tune. Dance, talk or be lifted up to where you can see how other people make things work. Sit out over space with a drink and tune in to what's happening elsewhere in the city. Try starting a riot or beginning a painting – or just lie back and stare at the sky."
                                                                    -From his drawing

"Its form and structure, resembling a large shipyard in which enclosures such as theatres, cinemas, restaurants, workshops, rally areas, can be assembled, moved, re-arranged and scrapped continuously," promised Price.
                                                            -Design Museum, 2013



     Although never built at this scale, Price eventually put these ideas into practice in a reduced scale at the 1971 Inter-Action Centre in the Kentish Town area of north London. The building constitutes an open framework into which modular, pre-fabricated elements can be inserted and removed as required according to need. Central to his thesis that a building should only last as long as it was useful, the centre was designed on the condition that it had a twenty year life span and it was accompanied by a manual detailing how it should be dismantled. For Price, time was the fourth spatial dimension, length, width and height being the other three. Price’s architectural philosophy is not about the finished building but more about an ability to enable and facilitate change in a changing world and to allow us to think the unimaginable. 


Fig.2-2-1,2 The system drawing of Fun Place plan by Cedric Price
(Canadian Centre of Architecture.:
It is very rare to have system = cybernetic diagram in the architectural drawing.
図.2-2-1,2 セドリック・プライスによるファンパレス計画のシステム図(カナダ建築センターこの時代の建築製図において、サイバネティック・ダイアグラムが見られるのは非常にまれである。

     Price’s philosophy influenced a number of buildings including Richard Rogers and Renzo Piano's early 1970s project, Centre Georges Pompidou in Paris. During the 1970s in Japan the Metabolist movement (Lin, 2010) had a certain presence in the development of architecture and urbanism, but its influence is difficult to trace beyond academia, and surprisingly little of its influence is visible in the urban fabric of cities today. 


Fig 2-2-1, 3 Centre Pompidou by R. Piano and R. Rogers  (designboom,  © katsuhisa kida /FOTOTECA, image courtesy of royal academy of art, 
Centre Georges Pompidou commonly shortened to Centre Pompidou; also known as the Pompidou Centre is a complex building in the Beaubourg area of the 4th arrondissement of Paris, near Les Halles, rue Montorgueil and the Marais. It was designed in the style of high-tech architecture by the architectural team of Richard Rogers and Renzo Piano, along with Gianfranco Franchini. It houses the Bibliothèque publique d'information (Public Information Library), a vast public library, the Musée National d'Art Moderne, which is the largest museum for modern art in Europe, and IRCAM, a centre for music and acoustic research. Because of its location, the Centre is known locally as Beaubourg. It is named after Georges Pompidou, the President of France from 1969 to 1974 who commissioned the building, and was officially opened on 31 January 1977 by President Valéry Giscard d'Estaing. The Centre Pompidou has had over 150 million visitors since 1977. 
図.2-2-1, 3 レンゾ ピアノとリチャード ロジャースによるポンピドゥーセンター(designboom, Katsuhisa Kida/FOTOTEKA, ロイヤル アカデミーオブアート提供の画像, view of the place-making cemtre pompidou, 
センタージョージポンピドゥーは、一般にセンタ- ポンピドゥー、または、ポンピドゥーセンターとして知られる複合建設で、パリ4区のボーブール地区、レアール、モントルゲイユ通り、マレ地区の近くにある。チャンフランコ・フランチーニと共に、リチャード・ロジャースとレンゾ・ピアノの建築設計チームによってハイテク建築のスタイルでデザインされた。広大な公共図書館である公共情報図書館(Public Information Library)、ヨーロッパ最大の近代美術館である国立近代美術館、音楽と音響の研究の中心地であるIRCAMがある。その位置により、地元ではボーブール地区と呼ばれることもある。この施設は委任主の、1969年から1974年にかけてフランス大統領であったジョルジュポンピドゥーにちなんで名付けられた。1977年1月31日にヴァレリージスカールデスタン大統領時代に正式にオープンした。1977年以来、センターポンピドゥーには15億人を超える人々が訪れている

     Metabolists were unique pioneers, who tried to incorporate temporal design into the planning process. Temporal design is defined as a design methodology whose processes are time-based. Usually, a design is done as a static image which one then tries to implement to achieve the original depicted image. By contrast, this temporal design methodology was concerned with the whole life of the building - its construction process, its use as a building, and ultimately its collapse. To ‘metabolize’, in this context, is defined as a procedure that classifies the material properties of architectural elements according to their life cycle. Once this life cycle is completed, the component or element is removed and a new one is plugged in. Since then the interest in and need for the design and construction of intelligent buildings and their urban aggregation into a metabolic system for cities has increased. Social contexts have changed radically, many new materials have come into production, cities have expanded and computational resources and processes have increased by several orders of magnitude. In addition, there has been increasing pressure to address sustainability issues such as carbon footprint, energy waste, etc. The question which arises is: “what is the appropriate model for urban Metabolism and what are the means of implementing intelligent and responsive buildings within urban metabolic systems?” 


Fig.2-2-1,4 Nakagin Capsel Tower by Kisyo Kurokawa (Megan Sveiven,AD Classics: Nakagin Capsule Tower / Kisho Kurokawa,archdaily, Nakagin Capsule Tower ( Nakagin Kapuseru Tawā) is a mixed-use residential and office tower designed by architect Kisho Kurokawa and located in Shimbashi, Tokyo, Japan. Completed in 1972, the building is a rare remaining example of Japanese Metabolism, an architectural movement emblematic of Japan's postwar cultural resurgence. The building was the world's first example of capsule architecture built for permanent and practical use.
図.2-2-1,4 黒川紀章による中銀カプセルタワ-(Megan Sveiven,AD Classics: Nakagin Capsule Tower / Kisho Kurokawa,archdaily,中銀カプセルタワーは、建築家の黒川紀章が設計した、日本の東京の新橋にある多目的住宅兼オフィスである。1972年に完成したこの建物は日本のメタボリズム運動の数少ない現存例である。戦後の日本の文化的復活を象徴するこの建物は、恒久的かつ実用的な用途のために建てられた、カプセル建築の世界初の実例であった。
Fig.2-2-1, 5 :System diagram for Plug-in Architecture (drawn by K.Hotta)The Metabolists’ approach lacks a means of evaluating and modifying architecture (buildings) after it is constructed, leaving no method for the reduction of architecture (buildings)

     The most relevant point with regard to the current thesis, which provides the basis for the hypothesis, is that the Metabolists’ approach lacks a means of evaluating and modifying architecture (buildings) after it is constructed, leaving no method for the reduction of architecture(buildings) (fig2-2-1). For example, Metabolists considered ‘Growth‘, which means just adding rooms to a building with capsules, only in the context of the Japanese post-war economic miracle from the 1950s to the 1970s. At that time Japanese leaders only focused on the increase and concentration of the population from a Utopian political view believing in impossibly idealistic schemes of social perfection. However, they did not concern themselves with the reduction or abandonment of units and whole areas. In other words, according to S. Hamano (Hiroki Azuma, 2009), they were missing a set of reduction rules which would create a means to judge a structure by its architectural and sociological aspects, analogous to the ‘Kill Strategy‘ used in selection (JH, 1975 (published 1992)) within the field of biological-computation, especially in the Genetic Algorithms.

     It is true that they estimated and proposed future adaptability, but they did not design ‘the subject’. Does this raise the question of who will take the initiative to handle this time-based evolutionary process? Will it be done by architects, governments, or users? This is why their system did not work well, although some public buildings have been metabolized (defined above), such as the National Museum of Ethnology, Osaka-Japan designed by Kisho Kurokawa,1977.

 この論文の仮説のために最も需要な内容は、メタボリストの建築のアプローチには、建設後に物理的建物を評価・改造する手段が欠如しており、加えて物理的建物を削減する余地が残っていないことである。(図2-2-1)。たとえばメタボリストは、1950年代から1970年代にかけての日本の戦後の経済成長のコンテクストで、建築物にカプセル状の部屋を追加することを「成長」とした。当時、日本の指導者たちは極端に理想主義的な社会計画を信じ、ユートピア的な政治的視点から人口の増加と集中にのみ焦点をあてていた。しかし、彼らは、部分ユニットや全体エリアの削減、或いは放棄にあまり関心を持たなかった。浜野(東浩紀編集、2009年)が言い換えたところによると、建築学的、かつ社会学的な削減ルール群を欠いていた。これは、計算生物学分野、特に遺伝的アルゴリズムの中の「選択」(ホランド, 1975年、(出版1992年))の中の概念、「キルストラテジー」と類似している。

 メタボリスト達が、建築の将来の適応性を提案・確立したのは事実であるが、彼/彼女らは「主体」をデザインしなかった。これは、誰が主導を執って、この時間ベースの進化過程を成し遂げるか、という問題提起でもある。それは、建築家なのか、政府なのか、またはユーザーなのか?彼/彼女らの代謝システムがうまく機能しなかったのは、これも原因のうちのひとつではなかっただろうか。もっとも、日本国立民族学博物館(黒川、大阪, 1977)など一部の公共施設は代謝し今でも生き続けているが。

2-2-2 . Criticism of Teleological Planning with A.Isozaki and C. Alexander’s idea 

2-2-2. 目的論的計画に対する批判、磯崎とアレキサンダーの概念を援用して 

Fig.2-2-2, 1: A diagram of teleological planning (Drawn by K.Hotta)1)Depict overall image, 2)Implement incrementally, 3)Fill the gap towards completion, 4)Initial condition has been changed図.2-2-2,1:目的論的計画のダイアグラム (著者による作成)1)全体の青写真を描く、2)徐々に実装(完了)していく、3)青写真に向かって隙間を埋める、4)全体の実装が完了しても、必要とされる要件が変わっている。

The traditional planning concept (fig2-2-2,1), which involved first drawing an overall image of an orderly future and then implementing it incrementally, is no longer effective. Because designers already know the planning objective before it is built, it is easy to define and demolish the object after building it. Architecture is, however, somehow a dynamic event which has a timeline rather than an object. What is really needed is not a controlled top-down plan, but a process that begins with the parts and progresses toward a whole. In such a process, there is no overall image (picture). There is never completion. What is important is a process in which the parts are self-sufficient (every part should have the ability to be dynamically interactive ie. be sensing, thinking, and acting). 


     Generally, a design, especially if designed by a single individual designer, tends to have one goal the establishment of order that is visually and logically complete. In such a case, the design is limited to visible outputs which look capable of controlling the system, including architectures and cities. This conforms to a rigid, hierarchical ‘tree-like ‘structure(C. Alexander, 1966). The spontaneous growth of real cities, on the other hand, has the character of a ‘semi-lattice’ (C. Alexander, 1966), constantly generating random relationships. This means that neither modern design methods, which set Utopia in the future nor the so-called city planning method, which is aimed mainly at controlling existing conditions, can be effective as long as they are based on a teleological structure. C. Alexander demonstrated logically the impossibility of planning; in his thesis “A city is not a tree“.(C. Alexander, 26 1966) He pointed out the implicit self-contradiction, that a single individual planning method cannot help but possess a ‘tree’ structure.

 一般的に設計(デザイン)について語るとき、特に1人の個人設計者(デザイナー)によって設計された場合、視覚およびロジック的確立のために特定の「秩序」を持たせる傾向がある。このような場合、システムを制御できるように見える、わかりやすいアウトプットに限定されてしまうことがおおい、建築や都市でも同じである。この産物は、「ツリーのような」(C.アレクサンダー、1966年)、硬直し階層的な構造を持つことが多い。一方、同時多発的成長をする実際の都市は、「セミラティス(網状交差図的)」の特徴を持ち、常にランダムな関係を生み出していく。これは、将来のユートピアを設定する現代設計手法も、主に前提条件を制御することを目的とした都市計画手法のどちらも、目的論的構造に基づいている限り効果的ではないことを意味する。アレクサンダーは論文 「シティーイズノットアツリー(C.Alexander 1966)」で単一の設計者による計画方法は「ツリー」構造を持たざるを得ない、という暗黙の自己矛盾を指摘したのであった。こうして、彼は計画の不可能性を論理的に示した。 

     Mr A. Isozaki was already aware of this issue which placed him in a critical position with respect to the Japanese Metabolist Movement. The problem is: the specialist’s design cannot help but be a teleological structure as opposed to an architect-less design. The Metabolists tried to avoid those specialist’s subjective design methods by using autonomous and time-based design methods (Time-based design is the architectural system that has the ability to change after being built), but they fell into the same trap because they still left the subject as ambiguous with regards the actual growing process. They drew beautiful-utopian drawings but did not set rules as to who is going to control the structure after leaving the architect’s hands. True autonomous design should be handled by the user.

     In brief conclusion, neither functionalism nor top-down or bottom-up planning methodology by architects was able to work properly. There should be more participatory planning methods, an architect-less architectural system though not in the vernacular tradition, as B. Rudofsky (Rudofsky, 1964) insisted, but a more contemporary method using novel communication tools.

 磯崎新はこの問題をすでに認識しており、それにより日本のメタボリスト運動に関して彼を批判的な立場に置いた。ここで問題となっているテーゼは、専門家による設計(デザイン)は目的論的構造を逃れられないことであり、それは所謂、建築家なしの建築と対立するものである。自律的で時間軸を考慮に入れた設計手法(時間軸を考慮に入れた設計とは、建設後に、構成を変更できる建築システム)を解決手段として、メタボリストはこの専門家による主観的な設計手法を回避しようとした。しかしながら、その想定した変化の過程に於いての「主体」に関して曖昧なまま放置したことによって、同じ轍を踏んだ。彼らは美しいユートピアを描いたが、それが建築家の手を離れた後、誰が構築物を制御するかについての ルールを設定していなかった。真に自律的なデザインとは、本来ユーザーによって舵取りされるべきであるが。


2-2-3 . A Shortcoming of Parametrisism

2-2-3. パラメトリック主義の欠点

Parametrical control in architectural modelling has been adopted by many scholars, architects, and computer scientists. The word ‘Parametricism’ was first introduced by Patrick Schumacher in his book The Autopoiesis of Architecture (Schumacher, 2010b). Not only his thesis but also his actual architectural methodology in his studio are built around digital-architectural design.


Fig.2-2-3,1 One example of parametrical urbanismby Ludovico Lombardi, Du Yu, Victoria Goldstein, and Xingzhu Hu. Surpervised by Patrik Schumacher. (Patrik, 
図.2-2-3,1 パラメトリカルアーバニズムの一例パトリック・シューマッハ指導のもと、Ludovico Lombardi, Du Yu, Victoria Goldstein, Xingzhu Hによる都市計画のドローイング。Patrik, 

     Even though Parametric design provides an initially dynamic response to a set of factors, such as effective shading for saving energy, the final product is a static solution that does not further adapt to either environmental changes or changes in the social context. If Parametricism is used appropriately, which means as a tool not used only for the desire for artistic uniqueness, it can provide one of the solutions to create pre-adaptive architecture (Pre-adaptive Architecture is defined as an architectural system which has dynamic simulation with changeable geometrical parameters for various types of optimization at the planning stage; before construction). However, this methodology is effective only at the planning stage of the process; once it is built, there is no way to revise it based on changes in its context. Even though there is a virtual software-based loop (fig 2-6-1), the system can not use the feedback after the hardware is established, thus it will not be fully adaptive. If the required environmental or functional conditions changed, it would make it difficult to achieve the desired outcome. For example, if there was a building with one reading room, and this room’s function was required to change to that of a bedroom, the environmental conditions in this room also need to change; the sunlight should be fully screened, and it should be quiet for sleep. Architecture cannot satisfy this requirement unless it can recognize time-based adaptability after construction.

 There are, however, numerous possibilities here. If the components have time-dependent adaptability, physically and digitally, true adaptability might actually materialise, at the building level and, in principle, also at the city level.



Fig.2-2-3, 2: A system diagram of Parametric Architecture (Drawn by K.Hotta)Before it is built, the architecture has adaptability with regards to various kinds of circumstances such as environment or cost etc. However after it is made, the building becomes a fixed shape. Then it does not have fluid-like adaptability, though it is optimised. There is no loop after it is built. It indicates architecture has lost adaptability.
図.2-2-3,2: パラメトリック建築のシステムダイアグラム (作成、筆者)建築前は、環境やコストなど様々な事情に対応できる適応性をもつが、建設後は物体としてその動きは止まってしまう。例えば数学的に最適化できていたとしても、モデリング時点での流動体のような適応性はない。ダイアグラムのように建築後にはループがなく、これは建築物が適応性を失ったことを示している。

2-2-4 .Three Realized Cybernetic Architecture Projects 


Fig.2-2-4,1: Blur by Diller and Scofidio, 2002, Expo.02 in Neuenburg, Yverdon, Biel and Murten(Norbert Aepli, Blur Building at Expo.02 in Yverdon, wikipedia, 
図.2-2-4,1:2002年ディラー・スコフィディオによる「ブラー」、エキスポ.02、ノイエンブルク、ドイツ(Norbert Aepli, Blur Building at Expo.02 in Yverdon, wikipedia, 

The Blur Building was built for the Swiss Expo 2002 on Lake Neuchatel. It is an architecture of atmosphere, according to designers Diller & Scofidio (Diller, 2002). The whole structure uses traditional static tensegrity principles to support an open deck covered by a network of computer-controlled water nozzles. Water is pumped from the lake, filtered, and shot as a fine mist through 31,500 high-pressure mist nozzles, shrouding the structure with steam to produce a responsive building envelope (the response mechanism is explained below). This technique allows the size of the cloud, and therefore the size of the building envelope, to be directly related and responsive to the environmental conditions that surround the building. 


     The aim of controlling the building in this way was to produce enough mist to cover the entire structure while not allowing it to drift or stray too far from the building (Diller and Scofidio 2002). “A smart weather system reads the shifting climatic conditions of temperature, humidity, wind speed and direction, and processes the data in a central computer that regulates water pressure.” (http://www.dillerscofidio. com). One parameter only is controlled, the density of mist. Sensors measuring wind speed and the natural air humidity were placed within the building and along the shoreline in order to collect the environmental data used to control the rate of mist produced by the computer-controlled nozzles. In addition, several individually controllable zones exist, enabling portions of the building to be shrouded at different rates, because of multiple sensors and mist nozzles. 

 このように建物を制御する目的は、ミストが建物から離れすぎたり散らないようにしながら、構造全体を覆うのに十分なミストを生成することであった。彼らのWEBによると「スマート気象システムは、気温、湿度、風速、風向の変化しつづける気候条件を読み取り、中央コンピューターでデータを処理し、水圧を調整する。」ということらしい((Diller and Scofidio, 2002)。ここでは、ミストの密度という1つのパラメータのみが制御された。風速と自然の空気湿度を測定するセンサーが、建物内と水面との境界線に沿って設置された。コンピューター制御のノズルから発生するミストの割合を制御するために、センサーはそれらの環境データを収集した。さらに特定の、複数センサーと複数ノズルにより構成される領域が存在し、それらの領域ごとを異なるミストの割合で、個別に制御し、カバーすることが出来た。 

     This Object Oriented System is shown in figure 2-2-4,2. Although this architecture uses responsive technologies to control the size and shape of its envelope dynamically, which can be considered a pioneering example of an event-based design concept, the control system is quite limited and not particularly interactive, especially in response to human input. 


Fig.2-2-4,2: The System Diagram of The responsive SystemThe diagram shows a typical responsive system. ie. Blur
図.2-2-4,2: 「レスポンシブ・システム」のシステムダイアグラムこのダイアグラムはレスポンシブ・システムのうちで代表的なものを示す。(例;ブラー)
Fig.2-2-4,3:The Aegis Hyposurface by dECOi, 1999~2001Pic from
図.2-2-4,3 デコイによる、「エイジス・ハイポサーフェス」、1999~2001年写真引用元

     The Aegis Hyposurface(1999~2001) is a dECOi project, designed principally by Mark Goulthorpe and the dECOi office with a large multidisciplinary team of architects, engineers, mathematicians and computer programmers, among others. This team included Professor Mark Burry, who was working at Deakin University at the time, along with various others from Deakin’s group, including Professor Saeid Navahandi and Dr Abbas Kouzani. This project was developed for a competition for an interactive artwork for the foyer of The Birmingham Hippodrome Theatre. It was devised for the cantilevered ‘prow’ of this theatre. From an engineering point of view, the surface was built upon a framework of pneumatic pistons, springs, and metal plates, all of which were used to deform a façade-like surface (Liu 2002). 

 「Aegis Hyposurface」(1999〜2001)はdECOiプロジェクトとよばれるもののひとつである。主にMark GoulthorpeとdECOiオフィスによって設計され、建築家、エンジニア、数学者、コンピュータープログラマーなどの大規模な学際的なチームが参加している。このチームには、当時ダーキン大学で働いていたMark Burry教授と、Saeid Navahandi教授やAbbas Kouzani博士を含むさまざまな人々が参加していた。このプロジェクトは、バーミンガムにあるヒッポドローム劇場のロビーにインタラクティブアートワークが計画され、そのコンテストのために作成された。この劇場には「船のへさき」のような片持ちの構造体があり、そこのために計画された。技術の観点から、この「サーフェス」は空気圧ピストン、バネ、および金属板の枠組みで造られ、これらはすべてファサードのような外観を変形させるために使われた(Liu2002)。

     Effectively, the piece is a facetted metallic surface that has the potential to deform physically in response to stimuli from the environment (movement, sound, light, etc.). Driven by a matrix of actuators which consist of 896 pneumatic pistons, the dynamic-elastic ‘terrains’ are generated from real-time calculations. Behind the façade’s surface, many pneumatic pistons are attached to metal plates that form the wall surface. Springs are then attached to both the pistons and the static structural frame, helping to control the location of each piston by anchoring it to the frame. 

     The proposed system has a dynamically reconfigurable surface capable of ‘real-time’ responsiveness to events in the theatre, such as movement or sound. A computer was programmed to fire each piston sequentially in order to produce a series of patterns that responded to environmental stimuli —sound being the particular stimulus used. The implicit suggestion is one of a physically responsive architecture where the building includes an electronic ‘central’ nervous system, the surfaces responding to any digital input (sound, movement, Internet, etc).



     However, there are some limitations. One is the structural split between flexible and static parts; all structural loads are supported by a traditional, static framework. The dynamic quality of the building only relates to the skin, not the structure that supports it. A second issue is that this project does not provide any functional solutions such as an architectural facade or a shelter but, rather, it simply demonstrates a kinetic system. Sterk criticised this work stating that ‘Thus a responsive architecture that consists of a functional building envelope which shelters people from environmental loads by addressing the principles of cold bridging, rain screens, and the dynamic transferring of structural loads still needs to be resolved.”  (Sterk, 2009b). Finally, the system is too simple to provide multi-layered interactivity because every controller is linked to a central computer. Hence it is not designed to provide higher intelligence or agent-based functionality.


Fig.2-2-4,4:The System Diagram of Controllable System (ie. Hyposurface
図.2-2-4,4: 制御可能システムのシステムダイアグラム(例、Hyposurface
Fig.2-2-4,5: Water Pavilion by NOX and Kas Oosterhuis (Pics from
図.2-2-4,5 ノックスとカス・オステルハスによる「ウォーターパビリオン」(写真引用

     The Water Pavilions consist of two parts, the Freshwater pavilion designed by NOX, and the Saltwater Pavilion done by Kas Oosterhuis (Oosterhuis Associates) in Holland, 1997(pic-14). The aim is to educate and inform the public about the latest technical advances, as well as to celebrate water’s more sensuous properties. These examples propose some alternative ordering of sensors and actuators, and for their control as a responsive and interactive system. It is called ‘Liquid’ architecture (the description comes from the American pioneer in cyberspace architecture, Markos Novak(Schwartz)). In order to effect a continuous interplay between people and buildings, he wants a chain reaction that is constantly out of balance. In the Freshwater Pavilion, in the absence of clearly definable floors and walls, people lose their balance and fall over; this new architecture demands a new kind of behaviour from the visitor. At the same time, however, the architecture in this example is driven by visitors; this is ‘interactivity’. The Water Pavilion is the first very large and complex, fully interactive, three-dimensional environment ever built. It is more than a quasi-interactive environment where the user can only choose from a limited number of possibilities supplied by the designer. 

  1997年にオランダにつくられた「ウォーターパビリオン」は、NOXによって設計されたフレッシュウォーターパビリオンと、Kas Oosterhuis(Oosterhuis Associates)によって作成されたソルトウォーターパビリオンの2つのパーツで構成されている(写真 2-2-4,5)。目的は、水のもつ感覚に訴える特性を改めて主張するだけでなく、訪問者に最新の技術的進歩について教育し広めることであった。これらの建物ではシステムはレスポンシブで、ときにはインタラクティブ可能であった、そのためセンサーとアクチュエータ―の構成がいくつか用意された。それは「液体」建築と呼ばれる(その言葉はサイバースペースアーキテクチャのアメリカのパイオニアであるMarkos Novak(Schwartz)に由来する)。人と建物の間に継続的な相互作用をもたらすために、彼は常に不安定な連鎖反応を望んでいた。「フレッシュウォーターパビリオン」では、明確に定義できる床と壁がないため、人々はバランスを失い転倒してしまう。このように、この建築物は訪問者にある種新しい動作を要求するが、また同時にこの建築物は訪問者によって操られる面もあり、これが「インタラクティビティー≒相互作用力」である。「ウォーターパビリオン」は、最初に建てられた、非常に大きく複雑で、完全なインタラクティビティーを備えた3次元環境である。ここでは、ユーザーが、準インタラクティブ的環境以上のものが期待できた、それはすなわちデザイナーによって想定された可能性からのみ動作を選択できるインタラクティビティーである。

     The software built into the Water Pavilion receives so many different sorts of inputs that even the designers cannot predict the results. Every moment is different and unexpected. This makes the Water Pavilion, not just an experience but also an unparalleled testing ground for the study of interactivity.
    In terms of hardware, in the Freshwater Pavilion, there is no distinction between horizontal and vertical, between floors, walls and ceilings. This translates into a responsive interior that uses the advantages offered by virtual environments to produce programmable spaces. According to Lootsma and Spuybroek (ref-33), using this interactive system through a thousand blob trackers and light sensors, the architecture can provide a hybrid space between a virtual representation and the physical space. The key is the interactivity between these two.


     Every group of sensors is connected to a projector that projects a ‘standard’ wire which together create a frame grid building and which translate every action of a visitor into real-time movements of (virtual) water. There are three different outputs or systems: 1) projected animations, 2) a lighting system, and 3) an audio system. Each of these three systems is distributed throughout the building to make a rich, multimedia environment.

“The light sensors are connected to the ‘wave’. Every time one walks through a beam of infra- red light one sees a wave going through the projected wire frames . . . visitors can create any kind of interference of these waves”

                                                -Lars Spuybroek,Lootsma, 1997. 


『光センサーは 「波 」に接続されています。赤外線光の中を歩くたびに、投影されたワイヤーフレームを通過する波が見える...訪問者はこれらの波のあらゆる種類の干渉を作り出すことができる』

                                                 -Lars Spuybroek,Lootsma, 1997

     However, some unsolved issues are worth mentioning. Firstly, the physical form is fixed and non responsive, though some phenomenal visualizations attempt to be responsive and interactive. Spatial quality sometimes depends highly on the shape of building and especially the interior space is static, and again the structural framework is isolated from the interactivity. Secondly, the multi-layered interactivity can provide a number of programs, but it is random. From the users view, it is quite rare to come across useful functions accidentally in the random controlled interactivity. Ideally the functions should be programmable by the end user. In other words, the interactivity has been designed and fixed by the system designer and not by the user.


Fig 2-2-4,6: The diagram of Distributed Control Systemie. Water Pavillion
図.2-2-4.6 :分散制御システムの図解、例;ウォーターパビリオン 

2-2-5 . Nicholas Negroponte’s Idea

2-2-5. ニコラス・ネグロポンテのアイデア

‘Responsive Systems’ have been developed in many fields including 1970s architecture. The accepted definition of responsive architecture is that of a class of architecture or building that demonstrates an ability to alter its form, to continually reflect the environmental conditions that surround it. The basic work of responsive architecture was done by Nicholas Negroponte at MIT, described in The Architecture Machine (Negroponte, 1970) and Soft Architecture Machines (Negroponte, N. 1975.). His research focuses on three main aspects.

 「レスポンシブシステム≒応答可能な仕組み」は、1970年代の建築学を含む多くの分野で研究されてきた。認められている定義のうちの一つは、取り巻く環境変化に対して継続的に何かしらの反応をするためにその形態を変化させられる建築物、或いは構築物の類である。レスポンシブル建築の基礎的な研究は、「アーキテクチャ・マシーン」(ネグロポンテ、1970年)と「ソフト アーキテクチャ・マシーン」(ネグロポンテ、N. 1975年)、などの論文で、マサチューセッツ工科大学のニコラス・ネグロポンテによってなされた。この研究はおもに、3つ側面に焦点をあてている。

     First he looks at the importance of the interface between humans and the architectural machine. In an earlier book, (Negroponte, 1970) he provides a literature review on systems theory and probes deeply into the underlying issues in man and machine relationships and artificial intelligence. He also proposes that responsive architecture is the ‘natural product of the integration of computing power into built spaces and structures, and that better performing, more rational buildings are the result’ (Negroponte, N. 1975.). 

 第1に、ネグロポンテは人間とアーキテクチャル・マシーン(定義は直下)の間のインターフェースの重要性を訴えた。前述の本;アーキテクチャ・マシーン(ネグロポンテ、1970年)の中で彼はシステム理論について文献調査を提供し、人と機械の関係、またそれらと人工知能についての潜在的な問題を深く厳密に調査している。レスポンシブ・アーキテクチャとは「コンピューティングパワーを建築空間や構造物に統合することで生まれる自然な産物であり、より高性能でより合理的な建築物はその結果である」(ネグロポンテ、N. 1975年)と提案している。 

     Secondly he considers user participation looking towards open source buildings. In practice, user participation in architecture requires planning without a designer before the building is built and control-ability by the user during the planning phase and even post-construction. Two aspects are key here, designing architecture that is ever-changeable, and by using a bottom-up approach where the end-user has the ability to change the building at every phase. In his second book, he discussed fully the literature around user participation in design. He said that the ideal design is so seamlessly and well integrated that it is not possible to tell which partner contributed what. This also leads to highly creative and innovative results. 


     Finally, he looks at computer personalization. Negroponte looks forward to the man-machine relationships becoming so personal that both man and machine can politely interrupt encrusted habits with fresh inspiration or a nudging reminder of higher priorities. Furthermore, he also predicts that the response pattern of a machine interacting with designers would differ, according to their temperament and culture. 


     However, the point is that his thesis was written in the 1970s, which means that it could not take into account the recent dramatic development of complex systems and their computing characteristics, robotics and their systems, and the spreading communication tools available to end users such as wireless internet or smartphones. He and his group, however, had magnificent foresight.