Programmable Architecture

-Towards Human Interactive, Cybernetic Architecture-

Kensuke Hotta (B.Eng, M.Eng, Msc)
Architectural Association School of Architecture, 2013

プログラマブルアーキテクチャ

ーヒューマンインタラクティブ、サイバネティックアーキテクチャーに向けてー

堀田憲祐(工学学士、工学修士、理学修士),
英国建築協会建築学校

2-4. From Biology and Biomimetics (Cooperative species)

2-4. 生物学とバイオミメティクス(協同種)から

2-4-1. The Sociable Weaver (Social Birds)

2-4-1. ソーシャル ウィーバー(ソーシャル バード)

Fig 2-4-1,1 'Social weaver nest mass'
Referencing a picture from "LIFE-HISTORY EVOLUTION AND COOPERATIVE BREEDING IN THE SOCIABLE WEAVER " by RITA COVAS MONTEIRO , page 4. “The photo shows part of colony 2, the largest colony in the study area that during the study period held 150-200 birds. The open savannah habitat characteristic of the area can be seen in the background.” (Covas,R 2002)
図2-4-1,1「ソーシャルウィーバーの巣の密集」
RITA COVAS MONTEIRO著 "LIFE-HISTORY EVOLUTION AND COOPERATIVE BREEDING IN THE SOCIABLE WEAVER" , page 4の写真を参照する。「この写真はコロニー2の一部で、調査期間中150-200羽が生息していた調査地域最大のコロニーである。背景には、この地域の特徴であるオープンサバンナの生息地が見える。" (Covas,R 2002)

The sociable weaver is a species of birds living in the arid region of southern Africa around northern Namibia, which has a strong relation with the Kalahari vegetation in the area. It is their nests rather than birds themselves which is conspicuous.

ソーシャルウィーバーは、ナミビア北部周辺のアフリカ南部の乾燥地帯に生息する鳥類で、この地域のカラハリの植生との関係が深い。目立つのは鳥そのものよりも彼らの巣である。

Their life pattern is unique and it has frequently been the target of research. They typically live in the same nest as a group, while most other bird species live independently in separate nests. Interestingly, several different subspecies of birds use the same nest simultaneously. Moreover other species use them for roosting. Some larger birds, such as Giant Eagles, use the nest as a platform to make their own nest. (Mendelsohn,JM 1997)

彼らの生活パターンはユニークで、度々研究の対象となってきた。他のほとんどの鳥類が独立して別々の巣に住んでいるのに対し、彼らは通常、集団で同じ巣で生活する。興味深いことに、いくつかの異なる亜種の鳥が同時に同じ巣を使用する。また、他の種はねぐらのためにそれらを使用している。オオワシのような大型の鳥類では、巣を自分たちの巣を作るための足場として利用することもある。(メンデルソン,JM 1997年)

The social weaver tends to make larger nests in order to be able to live collectively, compared to other species'. In a huge single nest made by stiff grasses, between two and five hundred sociable weavers live together. Their nests are built on a higher tree, some of them can be seen in the upper parts of power poles. Making the nest larger is excellent in terms of insulation, keeping warmth and controlling the inside condition. As it is used for a long time, the weavers repeatedly repair and develop of the nest.

ソーシャルウィーバーは、集団生活ができるように他の種に比べて大きな巣を作る傾向がある。硬い草で作られた巨大な一つの巣の中で、200〜500匹のソーシャルウィーバーが一緒に暮らしている。彼らの巣は高い木の上に作られており、中には電柱の上部にも巣が見られることがある。巣を大きくすることは、断熱性、保温性、室内環境のコントロールに優れている。長く使っていくうちに、ウィーバーは繰り返し巣の補修と発展をしていく。

The unique point of this biome is its combination of materials and creatures, much like a city. Each bird’s part of the nest is more than just a nest but an extension of their society, and not only their society but also that of other species'.

このバイオームのユニークな点は、都市のように素材と生き物が組み合わさっていることである。それぞれの鳥のパートは単なる巣ではなく、彼らの社会の延長線上にあり、彼らの社会だけでなく、他の種の社会の延長線上にもある。

2-4-2. The Termites (Insects' Architecture)

2-4-2. シロアリ (昆虫建築学 )

Fig 2-4-2,1 Termite Mounds in NamibiaReferencing a picture from http://www.writework.com/essay/termite-mounds
図2-4-2,1 ナミビアの シロアリのマウンド 
参照 
http://www.writework.com/essay/termite-moundsからの写真

There are also some insects which lead community life such as termites, ants and bees. (Both termites and ants belong to sort of Blattodea.) For example, Termites are characteristic in biomimetic, especially be high lightened as their nest called 'mounds'. Termites inhabit on majority of lands, from the tropics to the subarctic zone, but most of them prefer to live the tropics. Recent research shows this animal architecture is highly designed.

また、シロアリ、アリ、ハチなどの集団生活を営む昆虫がいる。(シロアリもアリも下顎動物門の種類に属する。)

例えば、シロアリは生体模倣性に特徴があり、特に「マウンド」と呼ばれる巣のように高く軽量化されていることが特徴である。シロアリは熱帯から亜寒帯までの大部分の土地に生息しているが、その多くは熱帯を好む。最近の研究では、この動物建築が高度にデザインされていることがわかってきた。

Against common view, which the insect has low intelligence, they do not simply result from the repetition of local patterns, but present a coherent global organization (Tuner 2000). Moreover, the internal spatial network is excellently compromise between efficient internal connectivity and defense against attacking predators. (Perbna,A etal.2008). More generally, the nest architecture contributes to maintain homeostasis of the local environment (Doan, 2007) (explained below).

昆虫は知能が低いという一般的な見方に反して、それらは単に局所的なパターンの繰り返しから生じるのではなく、首尾一貫したグローバルな組織を提示している(ターナー 2000年)。さらに、内部空間ネットワークは、効率的な内部接続性と襲ってくる捕食者からの防御との間で見事に妥協点である(ペルブナ,A et.2008年)。より一般的には、巣の構造は地域環境の恒常性維持に貢献している(デューン, 2007年) (以下に説明)。

There are thousands of variations in mound shape. W.V.Harris suggested that reason as dynamic equilibrium. In his thesis (Harris.W.V 1956) that a termite mound represents an equilibrium of three forces-behavior, material and climate. The first point: behavior means that this is not a natural heap of earth but architecture made by creatures. Second point: material means: mainly soil but it strongly affected by locality, so that different area has different shape of mound. Third point: climate means that temperature, rainfall, and natural erosion. Another interesting considering of Harris is that, the limited variation of material and climate in the area such as desert (or niche zone) tend to have uniform shape of mound. On the other hand, the spices that have greater tolerance of environment has the more variety in external appearance of it.

マウンドの形状には数千のバリエーションがある。W.V.ハリスは、動的平衡としての理由を示唆した。彼の論文(ハリス.W.V.1956年)では、シロアリのマウンドは、3つの力の均衡ー行動、材料と気候を表している。最初のポイント:行動とは、これは地球の自然の山ではなく、生き物によって作られた建築物であることを意味する。第2に、材料とは、主に土壌であるが、地域によって大きく影響を受けるため、地域によってマウンドの形状が異なることを意味する。第3に、気候とは、気温、降水量、自然浸食などのことである。ハリスのもう一つの興味深い考察は、砂漠(またはニッチゾーン)のような地域では、物質や気候の変化が少ないため、マウンドの形状が一様になる傾向がある。一方、環境に対する耐性が高いスパイスがあるほど、外観のバリエーションが豊富である。

Fig 2-4-2, Two Sections of Termites' MoundThe tunnel is split into branches near ground level, reaching each chamber. It plays the role of the ventilation system of the colony. Also, another termite opens vents just above the ground level of the mound.
図2-4-2,2 シロアリのマウンドの2つの断面図巣の内部のトンネルは地上近くで枝分かれして各チャンバー(換気前室)に到達する。これがコロニーの換気システムの役割を果たしている。また、マウンドの地表直上にも通気口を開くシロアリ種も存在する。

About Homeostasis. Most of the termites (but in here the example raised in Zimbabwe )(Doan, 2007) farm ‘fungus’ as their primary food source. In Zimbabwe, the temperatures outside range from 35 to 104 degrees F during the day, but this fungus farm needs to be kept at exactly 87 degrees F. Termite and their mound has a remarkable system.

ホメオスタシスについて。シロアリのほとんど(ただし、ここではジンバブエで飼育されている例)(デューン, 2007年)は、彼らの主要な食料源として「菌類」を養殖している。ジンバブエでは、日中の外の気温は摂氏35度から104度の範囲だが、この菌場は、正確に87度に保つ必要がある。シロアリとそのマウンドは、驚くべきシステムを持っているのである。

They made vents in the end of the tunnel to control the inside's temperature and humidity, hence air is sucked from the lower entrance of the tunnel, and goes through to the top. In order to work this ventilation system, termites keep digging new vents and plugging up old ones.

シロアリはトンネルの端に通気口を作り、内部の温度と湿度をコントロールしている。

そのため、空気はトンネルの下部の入り口から吸い込まれ、上部へと抜けていきます。この換気システムを働かせるために、シロアリは新しい通気口を掘ったり、古いものを塞いだりしている。

Fig2-4-2,2 Biomimetic Architecture, ‘The Eastgate Centre’This concrete structure, ‘The Eastgate Centre,’ has a termite mound mimicking the ventilation system. Because of the fans on the first floor, the clean=cool outside air sucked from the bottom of the building continuously. It is then pushed up vertical supply sections of ducts that are located in the central spine of each of the two buildings. Then it is vented under the floor and is used as air. The fresh air replaces stale air that rises and exits through exhaust ports in the ceilings of each floor. Then, it enters the exhaust section of the vertical ducts before it is flushed out of the building through chimneys. It is finally flowing up via central chimneys on each volume. The whole complex consists of two volumes and a void in the middle. Those work the same way as nested boxes. (http://inhabitat.com/building-modelled-on-termites-eastgate-centre-in-zimbabwe/)
図2-4-2,2 「イーストゲートセンター」、バイオミメティック建築物の例としてこのコンクリートによってつくられた構造物「イーストゲートセンター」には、シロアリマウンドの空気交換手法を模して設計された換気システムがある。1階にはファンが設置されているため、清潔で冷たい外気が建物の底部から連続的に吸い込まれる。その空気の流速と圧力は、背骨のように見える竪穴ダクトを通して各執務室に押し出される。そして、床付近から給気され、空気として利用される。新鮮な空気は、上昇する汚れた空気と入れ替わり、各階の天井にある排気口から排出される。そして、垂直ダクトの排気部に入った後、煙突から建物の外に流される。最終的には各ボリュームにあるセントラルチムニーを経由して建物上方に廃棄される。全体は2つのボリュームと中央のヴォイドで構成されおり、これらは入れ子の箱状に配置されており、同様に機能する。(http://inhabitat.com/building-modelled-on-termites-eastgate-centre-in-zimbabwe/)

Recently in 1996, its excellent ventilation system has been applied to real buildings, the Eastgate Centre in central Harare, Zimbabwe by architect Mick Pearce in collaboration with Arup.(Doan, 2007) Inspired by Zimbabwean masonry and the self-cooling mounds of African termites, this building has no conventional air-conditioning or heating system. Yet stays regulated year round with dramatically less energy consumption using design methods. This building uses less than 10% of the energy of a conventional building its size. These efficiencies translate to initial cost. Because of the improved air-conditioning system, it is said, the owners of this building have saved $3.5 million alone, also affecting the tenants’ rents, those are 20% lower than surrounded buildings. This effect is not only financial efficiency but also good for the environment.

最近では1996年に、建築家のミック・ピアースがアラップと協力して、ジンバブエのハラレ中心部のイーストゲートセンターを建設し、その優れた換気システムが実際の建物に適用された。(デューン、2007年)ジンバブエの石造とアフリカのシロアリの自己冷蔵できるマウンドにヒントを得たこの建物には、従来の冷暖房システムがない。しかし、設計の工夫により劇的にエネルギー消費量を抑えながら1年を通して安定した温度を維持している。この建物のエネルギー消費量は、従来の同規模の建物の10%以下である。このような効率性は、イニシャルコストにも繋がる。空調システムの改善により、このビルのオーナーは350万ドルを節約したと言われており、テナントの賃料にも影響を与えており、周辺のビルに比べて20%も安くなっている。これらの効果は経済的効率が良いだけでなく、環境にも良い。

2-4-3. Dictyostelium (Social Amoeba)

Dictyostelium discoideum is one of the cellular slime molds, is known as social ameba in various meanings. Slime mold is divided into two: ‘myxomycete’ and ‘cellular slime mold’, those look similar but different. The color of those creatures is various such as yellow, white, and blue. It exists close to our daily life area such as forest, but it may miss because it is small. Recent work (A,Brock 2011) has shown that microorganisms are surprisingly like animals in having sophisticated behaviours such as cooperation, communication and recognition as well as many kinds of symbiosis. This creature is unique in several points.

2-4-3. タマホコリカビ類 (ソーシャルアメーバ)

キイロタマホコリカビは細胞性粘菌の一つで、様々な意味でソーシャルアメーバと呼ばれている。粘菌は「変形菌」と「細胞性粘菌」に分けられ、似ているようで異なる。色も黄色、白、青などさまざまだ。森など私たちの身近なところに存在するが、小さいので見逃してしまうこともある。最近の研究(A,Brock 2011)により、微生物が意外と動物に似ていて、協力、コミュニケーション、認識などの高度な行動や、様々な種類の共生をすることが分かってきている。この生物はいくつかの点でユニークである。

Fig2-4-3,1 : Dictyostelium Aggregation by Bruno in Columbus 2008
D. discoideum exhibiting chemotaxis through aggregation
図2-4-3.1: 2008年、コロンバスのブルーノのキイロタマホコリカビの集合体
集合体を通じて走化性を示すキイロタマホコリカビ

First point is they behave sometimes as plants, but sometimes as animals, but also have character like fungi. For example, in some phases of life, they make fruit called ‘basidiocarp’. On the other hand, John Tyler Bonner (Bonnew,J,T 1965) has found that Dictyostelium discoideum walks and changes itself according to the environmental condition such as light. This is a character of animal. This ambiguous bionomics has been argued but recent study show, slime mold is slime mold, which means individual species . The order is the Dictyosteliida (Dictyostelid cellular slime molds or social amoebae.)

第1に、植物的であったり動物的であったりするが、菌類的な性格も持っていることである。例えば、生命のある時期には、「担子細胞」と呼ばれる果実を作る。一方、John Tyler Bonner (Bonnew,J,T 1965) は、 キイロタマホコリカビが光などの環境条件に応じて歩き、変化することを発見した。これは動物的な特徴である。このように曖昧なバイオノミクスが議論されてきたが、最近の研究では、粘菌は粘菌であり、それは個体種を意味する。目としてはタマホコリカビ目(タマホコリカビ細胞性粘菌 か ソーシャルアメーバ)である。

Second point is Dictyosteliida contains organisms that hover on the borderline between unicellularity and multicellularity. Its sociability is also unique to adjust the condition by dividing itself as an independent cell, is known as the foremost among the researchers. When there are feed (bacteria or a yeast fungus) in surround, it becomes ameba and eat and do cell division, those behavioral is like unicellular-animal. On the other hand, once they lost feed, one million individual start gathering and make mass. From various research this mass is more than just aggregate but has the feature of multicellular-animal. This mass moves to find better environment.

第2に、タマホコリカビには単細胞性と多細胞性の境界線上に位置する生物が含まれている。その社会性は、独立した細胞として分裂することにより条件を調整するユニークなもので、研究者の間では最も重要なものとして知られている。周囲に餌(バクテリアや酵母菌)があるとアメーバとなり、食べたり細胞分裂をしたりと、それらの行動は単細胞動物のようなものである。一方、エサがなくなると、100万個の個体が集まり始め、塊を作る。様々な研究から、この塊は単なる集合体ではなく、多細胞動物の特徴を持っていることが分かってきた。この塊は、より良い環境を求めて移動する。

Fig.2-4-3,2: Different Life Phases of DictyosteliidaDictyostelium discoideum's life cycle. 1: an elliptical spore. 2:Ameba germinated from a spore and propagates with eating.3: Ameba cells gather when they consume food. 4: Slug-like mass crawl around.5: make a basidiocarp when they find the appropriate place. (Referring to Kawada, T 2006)
図2-4-3,2:ディクティオステリダ(タマホコリカビ)の様々なライフフェーズタマホコリカビのライフサイクル。1:楕円形の胞子。2:胞子から発芽したアメーバは、食べながら増殖する。3:アメーバ細胞は捕食時に集まる。4:ナメクジのような塊が這い回る。5:適切な場所を見つけたら担子器果を作る。(T.Kawada, 2006年)

Thirds point is they do primitive farming, called husbandry. The social amoeba Dictyostelium discoideum has a primitive farming symbiosis that includes dispersal and prudent harvesting of the crop. (A Brock 2011) About one-third of wild-collected clones engage in husbandry of bacteria. They do not consume all bacteria, but incorporate bacteria into their fruiting bodies. Then they carry bacteria during spore dispersal and can seed a new food crop. When the case of edible bacteria is lacking at the new site, this could be an advantage.

The striking convergent evolution between bacterial husbandry in social amoebas and fungus farming in social insects makes sense. Because multigenerational benefits of farming go to already established kin groups, according to A Brock.

第3に、彼らはハズバンドリー(飼育)という原始的な農業をやっている。ソーシャルアメーバであるキイロタマホコリカビは、作物の分散と慎重な収穫を含む原始的な農耕共生を行っている。(A ブルック, 2011年) 野生で採集されたクローンの約3分の1が細菌の飼育に従事している。彼らはすべての細菌を消費するのではなく、子実体に細菌を取り込む。そして、胞子散布の際に細菌を運び、新たな食用作物を種することができる。新たな場所で食用バクテリアが不足している場合には、これが有利に働く可能性がある。

ソーシャルアメーバの細菌飼育と社会性昆虫の菌類飼育の間の顕著な収斂進化は理にかなっている。なぜなら、農耕の多世代の利益は、Aブロックによると、すでに確立された親族グループにもたらされるからである。