Programmable Architecture

-Towards Human Interactive, Cybernetic Architecture-

Kensuke Hotta, Architectural Association School of Architecture,

プログラマブル アーキテクチャ


堀田憲祐, 英国建築協会建築学校 

2-3-2. Cybernetics (Excerpt.)

Cybernetics, which was advocated by American mathematician Norbert Wiener in the late 1940s, was a synthetic academic discipline that dealt with the matter of control and correspondence in a system like an organism or a machine. Wiener regarded the operation of the mind, life, society, language and many other things as a dynamic system of control. Our environment reflects the realities of the cybernetic realm as we deal with some things (variables) that cannot be controlled and with others that are adjustable. The aim of cybernetics is to create the most appropriate environment for us by properly setting the values of the controllable variables based on the values from the past until the present. 

2-3-2. サイバネティックス(部分のみ)


     The concept of cybernetics greatly influenced the disciplines of ‘Social Science’ as well as the disciplines of ‘Natural Science’, as it was relevant to a large number of academic disciplines. The concept of cybernetics had direct connections with such theories as automation, navigator, telecommunication, computer and automaton. However, as the theory of cybernetics aimed to study the nervous system as a kind of correspondence system, it was applied to the fields of Physiology and Psychology. In addition to this, a discipline, called Bio-Cybernetics and aimed to investigate, for instance, the information of the living bodies, was invented. It was also applied to Economics, Sociology and the theory of financial planning and developed as operations research and the system theory. It can be argued that cybernetics provides the basic foundation of information science as we know it today. 


 The new system theories developed in the late twenty-century seek to explain various phenomena that cannot be captured within the framework of cybernetics, which considers systems from the perspective of control. Theories such as Humberto Maturana and Francisco Varela’s Autopoiesis, Magorou Maruyama’s second cybernetics, Hermann Haken’s Synergetics, basically aimed at superseding cybernetics. 


     These new system theories have a different orientation than cybernetics. Whereas cybernetics basically described a system as an entity that maintains itself toward the goal of control, new theories of system generally tended to illustrate system as the incessant process of deviation and pay attention to the dynamic order that is generated through these deviations. Ilya Prigogine’s 'dissipative structure' is a good example of such new system theory of deviation. It is a theory out of 'thermodynamic equilibrium', which sustains its stability by emitting energies and materials that are absorbed from the surroundings in different manners. 


2-3-3. Control System and Control Theory

Control theories describe the methods in engineering and mathematics which aim to control dynamic behaviour. The usual objective of control theory is to control a system. It attempts to adjust the system behaviour through the use of feedback. Navigation, machine design, climate modelling and so on are examples of systems where control theory is applied. In control theory there are four basic functions: Measure, Compare, Compute, and Correct. These four functions are complemented by five elements: the Detector, the Transducer, the Transmitter, the Controller, and the Final Control Element. Block diagrams are often used to explain the flow of the system. 

2-3-3. 制御系と制御理論


     In the early control system, a relatively simple system called an ‘Open-loop Controller’ was used. An Open-loop Controller was also called a non-feedback system. As a result, the controller could not compensate for changes. For instance in a car using cruise control a change in the slope of the road could not be accounted for. With the development of the ‘Closed-loop controller’ sensors monitored the system output and feedback the data to maintain the desired system output. Feedback was able to dynamically compensate for the difference between actual data and desired data. It is from this feedback that the paradigm of the control loop arises: the control affects the system output, which in turn is measured and looped back to alter the control. 


Continue on the book~