Programmable Architecture

-Towards Human Interactive, Cybernetic Architecture-

Kensuke Hotta (B.Eng, M.Eng, Msc)
Architectural Association School of Architecture, 2013

プログラマブル アーキテクチャ


堀田憲祐, 英国建築協会建築学校 

Chapter 4 Architectural Design Proposal

第4章 PAを体現する、建築デザイン例の提案 

4-1. Introduction

This chapter introduces the philosophy of Programmable Architecture (PA). The developed architectural model, a flexible kinetic-tensegrity structure, provides one approach to PA, but the number of possible solutions is countless. The author does not think that there is one optimal solution for PA, but rather it needs to combine local decisions for each of its operations or programmes. Thus, there are better answers than the proposed solution for PA, neither in terms of component design with regards to its global design in relation to the site. Rather than searching for the best design operating in its optimal state, the principle of PA offers an alternative design strategy. This system should be seen as a dynamic architectural product that is able to answer different user requirements deploying other solutions in each circumstance where it is implemented (built/introduced). It has the capacity to be developed using a variety of locally available materials at different scales and within varying budgets.

4-1. 序論


4-2. Space Reconfiguration

As an assumption, it is set that every activity which contributes to all the actions which make up daily life, is determined by a set of environmental conditions. From this hypothesis, reductionistic environmental parametricism is now introduced. If this hypothesis is to some degree true, activities become easier to control by adjusting environmental parameters. It becomes possible to reconfigure activities through environmental reductionism. For example, in this figure, a space (5m x 5m) in the park is bisected (sectioned), and its environmental conditions, such as light, air quality and flow, temperature and sound, are analysed layer by layer. Some environmental layers such as light are measured using scalar units such as the illumination level, while other layers, such as the airflow layer use vectors to describe wind direction and turbulence. When this data is analysed and displayed as a grid over the site, it becomes possible to reconfigure the space by adjusting the overlaid environmental factors.

4-2. 空間の再構成


Fig.4-2,1: The Idea of Environmental Reductionism (by Author)This diagram explains the possibility of transferring activity by the environmental reductionism idea.

4-3. Electrical Controlled - Cybernetic Architecture

The proposed cybernetic architectural system is simple, especially compared to existing machines such as cars, computers or even a 17th-century steam engine. At its heart is the Feedback Loop. The Feedback Loop system is defined as a re-insertion of data where one system’s resultant information (output) is inserted into another system’s processes (input).

4-3. 電子制御式の、サイバネティック・アーキテクチャ


Cybernetics (Wiener, 1961) is the word used to convey the idea of comparing physical machines with biological organisms in regards to how their behavior and metabolism are controlled. Both possess sensors that feed information into a decision-making process which then regulates the output or behaviour. In the early development of Cybernetics, which began with Norbert Wiener, three critical aspects of the process were identified. Wiener treated this process as a feedback system and the information flows were identified either as an input or an output, which was ground-breaking at the time. 

サイバネティクス(ウィナー, 1961)という用語は、生物の行動や代謝がどのように制御されているかという分析を、機械と比較し、適用しようとする学問とともに生まれた。どちらもセンサーを備え、そこから得た情報を以って意思決定を行い、それが出力され、行動を制御する。ノバート・ウィナーがかかわった初期のサイバネティクスでは、プロセスの3つの重要要素が下記のように明示された。ウィナーは情報の流れを入力または出力として識別し、このプロセスをフィードバックシステムとして扱ったが、これは当時としては画期的なことであった。

     This proposal will explore the development of a model for an urban metabolism with the design and construction of intelligent buildings and urban blocks. This architecture can modulate their surface properties and spatial configurations in response to external stimuli (such as light, sound, and wind). The triggers can be climatic and ecological, and economically driven programmatic changes. 


Fig.4-3,1: The most straightforward electrical circuit, which has input and output in PA ( Drawn by author) 
図.4-3.1: PAにおける、もっとも簡単な入出力の電気回路図の例 (筆者作図) 
Fig.4-3,2: The Shot of Electrical Boards for a physical model for PA  (by Author) 
 図.4-3,2: PAの模型のための電気盤の写真(筆者によるもの) 

4-4. Flexible Structure: Kinetic Tensegrity Component (Drawing)

Why use tensegrity components? Tensegrity-tensional integrity-developed by Gomez-Jauregui, has a basic structural principle that uses isolated components in compression inside a net of continuous tension. In such a way that the compressed members (usually bars or struts) do not touch each other, and the pre-stressed tensioned members (usually cables or tendons) delineate the system spatially (Gomez-Jauregui. 2010). A tensegrity structure has several unique points.

4-4. 柔軟な構造;キネティック・テンセグリティ・コンポーネント(ドローイング)

 ここでは、なぜテンセグリティーコンポーネントを採用するのかについて説明したい。J.ゴメス等によって発展させられたテンセグリティーの応用構造(Tensegrity-Tensional Integrity)は、連続した張力部材のなかに、独立した圧縮部材を用いるという基本構造原理を持っている。圧縮された部材(通常は棒や支柱)は互いに接触せず、あらかじめ応力が加えられている引張部材(通常はケーブルや緊張材)がシステムを空間的に区切る(Gomez-Jauregui, 2010)。また、テンセグリティー構造には、下記のように他の構造にはないユニークな点がある。

As Harvard physician and scientist Donald E. Ingber pointed out in his article (Ingber, 1998), 

“The tension-bearing members in these structures —whether Fuller’s domes or Snelson’s sculptures —map out the shortest paths between adjacent members (and therefore, by definition, arranged geodesically). “

Tensional forces naturally transmit themselves over the shortest distance between two points, so the members of a tensegrity structure are precisely positioned to withstand stress best. For this reason, tensegrity structures offer a maximum amount of strength. This structural feature can produce exceptionally rigid structures for their mass and the components’ cross-section.

ハーバード大学の医師であり科学者であるドナルド・E・イングバーは、その論文(Ingber, 1998)の中で、



     Hence, tensegrity’s lightweight characteristics make it suitable for adaptive architecture according to Korkmaz (Korkmaz et al, 2011). Eleanor Hartley further points out that visual transparency contributes an important aesthetic quality to these structures. (Hartley, 2009) Theoretically, there is no limitation to the size of a tensegrity structure. Hence, cities could be covered with geodesic domes. 

 このゆえに、Korkmazらによれば、テンセグリティーは軽量であるため、適応性のある建築に適している(Korkmaz, 2011)。さらに、エレーナハートレイは、視覚的な透明性がこれらの構造体に重要な美的品質をもたらすと指摘している(Hartley, 2009)。また、理論的にはテンセグリティ構造物の大きさに制限はない。都市全体がジオでシックドームで覆われることもありうるかもしれない。

Fig.4-4,1: Kinetic Surface in Msc thesis at Bartlett UCL (by Author, 2008)This is the electric-controlled fabric in the thesis (Programmable-Kinetic-fabric for Architecture, 2008). The components are not yet tensegrity but use a somewhat tensile system. At this stage, the deformation was really limited both in the point of direction, and amount of movement.
図.4-4,1: ロンドン大学、バートレット校での修士論文におけるキネティックサーフェイスの模型 (著者、2008年)これは、論文(Programmable-Kinetic-fabric for Architecture, 2008)にある電気制御のファブリック(布上のロボット)である。構成要素はまだ完全なテンセグリティーではなく、しかし張力のあるのシステムを使用している。この初期型モデルでは、変形は、方向、量ともに非常に限られたものであった。
Fig.4-4,2: The Early Model of Tensegrity Surface, 2010, by AuthorThis is the very early physical model of a tensegrity surface, made with bamboo sticks and rubber bands. Individual components, made by simple tensegrity, can stand themselves but the surface of 3D trusses could not keep their shape against gravity.
図.4-4,2: テンセグリティサーフェイスの初期モデル、2010年、筆者撮影これは竹の棒と輪ゴムで作った、テンセグリティサーフェイスのごく初期の物理的な模型である。単純なテンセグリティで作られた個々の部品は自立できるが、それらで展開された3Dトラス表面は重力に対して形状を保つことができなかった。

     During the development of the component-based system proposed in figure 4-4,2, the author paid special attention to the development of the physical model. At the beginning of the experiments, the components had binary behaviour – flexible or rigid. There was no space for an intermediate stage between the two behaviours. The malleability of the model became controllable over time and the final component can exhibit different levels of behaviour from flexible to rigid. The adaptive behaviour in terms of the rigidity of the component was achieved by using different types of springs. The component would change according to the desired performance. The membrane, for instance, was evaluated according to the amount of shadow it could provide. The structure was evaluated according to the degree to which it is able to change its shape.


Fig.4-4,3 Self Stand - Recover Tensegrity (by Author and Y.Komiyama)In contrast, the designed tensegrity system has a single component that after local deformation at the component level can recover its initial shape. There is no pre-differentiated morphology; the differentiation occurs through electrically controlled inputs. The minimum requirement for the component is that it has change-ability and self-recovery functions in its shape. As demonstrated in the figure this component-populated system consists of a 2D array of the same component and it can be industrially mass-produced.
図.4-4,3 自立型-回復式テンセグリティ(筆者+小見山氏によるもの)一方、設計されたテンセグリティシステムは、単一のコンポーネントで局所的に変形したのちに自律的に最初の形状にもどることができる。いわゆるパラメトリックモデリングのようにあらかじめ分化した形態をデザインとして固定するのではなく、電気的入力によってに制御されコンポーネントの分化が行われる。コンポーネントに要求される性能は、その形状が変更可能であること、そして自己回復機能を持つことである。図に示すように、このコンポーネントベースの建築システムは同一部品の2次元配列で構成されており、工業的に大量生産することが可能である。
Fig.4-4,4, The 1st Generation Model Parts at Kinetica Exhibition, 2010 (by Author and Shari*3)This Picture shows every part of one tensegrity component. In this generation, there are too many, so to make one component takes time and man's energy.
図.4-4,4, 2010年の Kinetica展示会での第1世代モデルパーツ(筆者、およびShari*3によるもの)この写真は、テンセグリティコンポーネントのすべての部品を示している。この世代では、まだ部品点数が多く、ひとつのコンポーネントを作るのに時間と労力がかかる。
Fig.4-4,5: Responsive Kinetic Tensegrity roof patch (by Author and Shari*3)This model is an electrically controlled, dynamic responsive model. The system is light sensitive, when it detects light the structure starts to deform, each component has its own sensor, so the movement is organic and smooth. This model was exhibited at Kinetica ArtFair2012.
図.4-4,5: レスポンシブル・キネティック・テンセグリティ・ルーフ部分模型(筆者、Shari*3によるもの)このモデルは、電気的に制御された動的応答モデルである。光に反応し、光を感知すると構造体が変形を始める仕組みになっており、各コンポーネントにセンサーがあるため、有機的で滑らかな動きをする。このモデルは、キネティカ・アート・フェア2012で展示された。
Active, Kinetic tensegrity study Worked with Shari *3
アクティブ、キネティックテンセグリティ研究 (Shari*3と共同開発 )
Fig.4-4,6, Manual-Remote Control Kinetic Tensegrity Roof Patch (by Author and Shari*3)This picture shows one of the alternative control methods of a tensegrity structure. Basically, this structure is working automatically to detect light with sensors, but also allowed us to control human input through mobile. Here Android mobile is used to control wirelessly.
図.4-4,6, マニュアルーリモート制御のキネティックテンセグリティルーフパッチ(著者とShari*3)この写真は、テンセグリティ構造の制御方法の1つを表している。基本的にこの構造物は、センサーで光を感知して自動的に動作するが、携帯デバイスを通して人間が割り込み入力し、制御することもできる。ここでは、アンドロイド携帯電話を使い、ワイヤレスで制御している。
Fig.4-4,7:The 2nd generation Model at SFF Exhibition, (by Author and Shari*3, 2011)This picture shows the second-generation model of this system. This is made with laser-cut MDF and fishing wire and biometal. The first whole model has an electrical system with Arduino though still, the scale is small.
Fig.4-4,8: The 2nd Generation Model and its Movement (by Author and Shari*3)This diagram shows the ideal deformation of this model.
図.4-4, 8 :第2世代モデルとその動き(筆者と Shari*3)この図はこのモデルの理想的な変形を表している。
Fig.4-4,9: 3rd Generation, ½ Scale model and its Parts FabricationReviewing the previous model, the simplified model is designed. This makes the easy assembling of the model. Also quick production. With the recent development of rapid prototyping, especially in this case laser cutter, the planned parts can fabricate easily, quickly and precisely. In the future development, 3D printing methodology is also worth using.
図.4-4,9: 第3世代、1/2スケール物理モデルとその部品製作これまでの設計を見直し、デジタルファブリケーションのため製造と組み立てのために簡略化した。また、生産性も向上する。近年のラピッドプロトタイピングの発展により、特に今回はレーザーカッターを使用することで、計画したパーツを簡単に、素早く、正確に製作することができるようになった。将来的には、3Dプリンティングの手法も利用する価値がある。
Fig.4-4,10: 3rd Generation, Electrical Working ModelThis picture shows a simplified model and attached membranes. One component can expand to almost 300mm by the plan. It is foldable, easy to carry and lightweight structure.
図.4-4-10: 第3世代、電気的稼働モデルこの写真は、簡略化したモデルで、メンブレン(膜)を貼り付けたものである。1つのコンポーネントで平面的に300mm近くまで拡大することができる。折りたたみ式で持ち運びがしやすく、軽量な構造になっている。
Fig.4-4,10: 4th Generation, Real Scale ModelThis picture shows the latest model, scaled up to almost 700mm as one component. There is no rule but this could be one to one scale model. The second picture shows the metal parts at the end of the suspension. These parts enable it to change components' hardness/flexibility. Depending on that, components can adapt structure requirements,  as well as the actuator's power.
Fig.4-4,11: Drawings of the Components, as an Active Shading System
With the changing degree of the membrane,  components can shade the light. So this canopy made with those components can adapt to the required amount of sunlight, for underneath space. Also, these components may have the potential to control air transparency. These components work as both environmental shade and structure. The components are made of carbon (or aluminium) pipe, Its depth will be changed depending on the part. If Internal stress becomes high, it would be possible to adapt by changing the height of the space frame.
図.4-4,11: アクティブシェーディングシステムとしてのコンポーネントのドローイング
Fig.4-4,12: Drawings of the Components,  for an Integrated Skin
The top of these components is covered with inflated ETFE. This material is flexible and printable, so it becomes possible for the top can generate solar energy power. Thus these components can have additional functions.
図.4-4,12: 多機能膜についての提案これらのコンポーネントの上部は、ETFEで覆われている。この素材は柔軟性があり、印刷が可能であるため、上部で太陽光発電等を行うことが可能となる。このように、このコンポーネントには追加の機能を持たせることができる。

4-5. Ever Changing Plan

4-5. 変化し続ける計画(ドローイング) 

Fig.4-5,1: Image Perspective Okayama Competition (Auther and Shari3)The proposal was for a single large fabric structure covering the huge plaza (100m x 45m) with a soft kinetic roof creating one large square. While architectural space and surrounding space are usually treated separately, the proposal seeks to define indoor space as an extension of trying to control space, including outdoor and semi-outdoor space. This large roof consists of a number of tensegrity components each with uniquely controlled.

A practical proposal is shown here to further illustrate the possibilities of PA. This proposal for an LRT (Light Rail Transit) station in Japan was for a competition held in 2010 in Okayama prefecture. This architectural paradigm diverges from the traditional architectural planning method. 

 ここではPAの可能性を示すため、実際の建築物としての提案事例を紹介する。この提案は、2010年に岡山県で行われたLRT(Light Rail Transit)駅舎のコンペに応募したものである。この建築のパラダイムは、従来の建築の計画手法とは一線を画している。 

     In Modern architecture, functionalism was looking for an optimization of the space. The design needed to fulfil the maximum architectural function, whether a bedroom or toilet among others. In other words, the space was designed for a static and specific function. For example, when an architect designed a 'bedroom', he/she thought: it is better to have carpet than wooden pavement as for functional reasons silence is needed; a big window is not needed since the room is mainly used to sleep; the toilet should be close to the bedroom but the entrance hall which is a noisier place should be far away from this room. 

Following such practical and functional decisions, the 'bedroom' functioned as required – a silent and dark place where one can sleep. For each programmatic function, there were a set of parameters that one needed to control from the outset.



     However, the proposed PA, suggests that these relationships between function and the place, should not be fixed, as outlined by the functionalist line of reasoning. More functional flexibility was allowed as the function of the space can change both in a cyclical fashion as well as over the lifespan of the structure, e.g. a bedroom can be a living room during different times of the day. 


     From the user’s point of view, the individual selects such 'floating' functional spaces by him/herself rather than having them imposed by architectural planning. As functions and places are not connected, users have to search for comfortable spaces or even have to create their favourite spaces by manipulating the existing architectural systems. Users, also have an active position in deciding what is happening in each space according to their requirements. The proposed PA roof system allows the user to begin to manipulate the functions within these spaces. 


Fig.4-5,2: Screenshots of the movie of the OkayamaLRT (Auther and ShariShariShari)This roof can be a filter for the natural environment thus varying the inner spatial character of the station square. A computer program, built with ‘Processing’, allowed the development of new geometrical decisions.
図.4-5,2: 岡山LRT駅案の動画スクリーンショット(著者+ShariShariShari)駅前広場のこの屋根は、自然環境と内部空間の間のフィルターとなり、建築環境空間の特性を変化させることができる。Processingで作成したコンピュータプログラムにより幾何学的な形状決定を制御する。
Fig.4-5,3: Plan and Elevation of the Okayama LRT station (Auther and ShariShariShari)By modelling a spring in the script, we proposed a new method for determining the geometry of the roof in response to the desired floor plan. It could realise antithetic concepts, simultaneously providing natural but sophisticated planning like a biological system.
図.4-5,3: 岡山LRT駅案の平面図と立面図 (著者+ShariShariShari)スクリプトでバネをモデル化することで、希望する間取りに対して屋根の形状を決定する新しい手法を提案した。このしくみは、相反する条件を両立し、同時に自律的で洗練されたプランニングを提供することができる、生物系のように。
Fig.4-5,4:Section of the Okayama LRT (Station Mode)The roof canopy maintains a certain height to be able to provide enough space for the LRT train.
Fig.4-5,5: Section of the Okayama LRT Station (Gathering Mode)The roof canopy provides a big amount of space in the middle of the canopy.  This affords a gathering activity underneath.
図.4-5,5:岡山LRT駅コンペ案の断面(集会モード)ルーフキャノピーは中央に大きな空間を確保している。 これにより、その下での集会等の広い場所を必要とするアクティビティを可能にする。
Fig.4-5,6: Section of the Okayama LRT Station (Scattering Mode)The roof canopy provides several small spaces for different uses.  People utilise the space for individual activity.
図.4-5-,6 :岡山LRT駅案のセクション(散在モード)ルーフキャノピー構造体は、ユーザーの異なる室(的)用途のための小さな空間を屋根によって幾つか分節し、用意している。 人々は個々の活動のためにこの空間を利用する。
Fig.4-5,7: Plan of the Okayama LRT Station 
図.4-5,7: 岡山LRT駅・コンペ案の平面図 

4-6.The Three Different Scales: Local- Regional -Global 


Within PA, the architectural systems can be defined as a device which connects (mediates between) the environment and humans. Various reciprocal actions can happen when this system is placed in a dynamic-ecological world. The designer has the task of creating and planning how humans interact and engage with the environment. 

     Depending on the place where this architectural system has been placed the level and type of interaction would be different. For example, positioned in the desert, it’s interaction with a sand storm would be more critical in terms of performance, whereas if it is located on the surface of the moon, air pressure or solar radiation would be crucial performance criteria. These differences would be incorporated into the above definition of the system.



Fig.4-6,1: Hierarchical System Diagram'Local-Regional-Global' hierarchy is important for the understanding of the control system.
図.4-6,1: 階層型システムダイアグラム上記の「局所、部分、全体」階層は制御モデルの理解のために重要

     In the proposed PA system, there is a clear hierarchy, but this hierarchy is not defined by the physical form. Physically, as shown in the drawing the suggested roof canopy is made out of components that seem a single fabric. Because the global design consists of individual components. Yet the above-mentioned 'Local-Regional-Global' hierarchy is defined in the control system (construction model, will be explained in 4-8 ) model. This hierarchy cannot be seen in the object’s static representation but may be recognized in the dynamic movement (ie. digital simulation of the dynamic behaviour). In this diagram(fig,4-6,1), Architecture is briefly described as a system surrounded by various ecological systems.


     As Tschumi (Tschumi, 1994) or HiroshHara (Hara, 1987) declared "Architecture is not an object but an event". This is true not only with the proposed architectural system which is a dynamic-kinetic system but also in traditional architecture which was static, yet the surrounding environment and human action were constantly evolving. The dynamic quality of architecture is not only a property of the kinetic systems but includes traditional architecture. 

 ベルナルド・チュミ(Tschumi, 1994)や原広司(Hara, 1987)が宣言したように「建築は物体ではなく、イベント」である。これは、提案されたダイナミック・キネティック・システムである建築システムのみならず、静的でありながら周囲の環境や人間の行為が常に進化していた伝統的な建築においても同様である。建築の動的な性質は、キネティック・システムだけでなく、伝統的な建築にも当てはまるのである。 

4-7. The Compromise System Between Global-Local as Democracy-Socialism 


Here the two control principles of PA are introduced. The first principle prioritizes the ‘Local’ or human action, i.e. the capacity of humans to manipulate the system locally. The second principle prioritizes the ‘Global’ where the global environment is generated through external environmental input from sensors. The 'Region' level of the hierarchy mediates between these two principles. In addition to negotiated interactions between the ‘Global’ and ‘Local’ levels, there are also exceptional situations where one overrides the other. 


     For example, if there is an accident and an ambulance has to go under this big roof, the architecture cannot wait for a mediated right but the slow decision, but it needs a quicker response. Human input can override the usual functioning of a temporary administrator. The opposite happens, for example when there is an earthquake. The architectural system does not have time to respond to thousands of user’s movements and consequent inputs but rather an emergency shape is generated as a response to unexpected input. In this case, the system just ignores a single user’s input. 


     The relationship between the two principles affects heavily the dynamic capacity of the system. A key aspect of this dynamic system is the time axis, allowing temporal inputs and outputs to be empowered and interact with each other. The actual algorithm used to implement this time axis will be explained in chapters 6 and 7, but the importance of the time frame is now briefly explained via illustration. 

     For this example, the system is responding to strong wind at 10 am so it attempts to minimize its surface area and thus its air resistance to avoid collapse. However, after one hour at 11 am, with the sun rising to its highest point, a second requirement is revealed,  the system has to provide maximum shade so it needs to reconfigure itself. The situation becomes more complex if two requirements are present for instance if the strong wind hasn’t stopped at 11 am. The building has to withstand the strong wind but also has to provide maximum shade at the same time. The system has to make complex decisions where one environmental requirement is in conflict with others. This kind of conflict can become more extreme when human input is added.



     For example, the shape of roof is optimized for strong wind at 10 am, but also a large domed space is needed underneath the kinetic roof for a lunch party with 100 people. The wind resistance shape and the dome request from human input will clash. The architectural system has to mediate and make a decision each moment along the time axis. These types of situations happen all the time because architecture- both system and building – exist simultaneously in the environmental and social-ecological realms that change with 'time'. The methods of mediating is the most important issue here.

 The long-standing debate on political methods may fit in well here. The idea of ‘Democracy’ and  ‘Socialism’ are models for manipulating conflicting demands. Buildings as devices for incorporating human input may also benefit from these analogies.


 長い間行われてきた、政治の手法に関しての議論がここにうまくフィットするかもしれない。「民主主義」 と 「社会主義」は、相反する要求をまとめるためのモデルである。人間のインプットを取り入れる装置としての建物は、これらアナロジーが役立つこともあろう。

Fig.4-7,1: System Diagram in Ecology (Auther) 
図.4-7,1:生態系のシステムダイアグラム  (筆者)

4-8. The Relation between the Physical Model and Constructive Model 

4-8 . 物理モデルとコンストラクティブモデルの関係 

 Two realms coexist in the PA, one architecture is the physically built structure the other is the virtual system model. The connection between the two worlds is not simple (according to Braitenberg, the method of connection could produce even intelligence) and the relationship between the two is inseparable. This research is an effort to unify the two parts. 

The physical system is composed of an MDF structure (the bones of the system), a membrane made of elastic fabric, shape memory alloy and the electrical wiring to the Arduino microcontroller (Banzi et al., 2005~). The virtual model visible on the computer screen runs on the computer program 'Processing' using a physical engine called the 'constructive model', it represents the non-physical part of the system, which is the control part, and or simulation part. Lipson H. from Cornell University has a similar vision for a dual model system. He called the two parts ‘robot’ and ‘awareness’ (Lipson and Pollack, 2000). This hybrid model idea may be not novel in engineering and complex system science where simulations are used. Hence, here the model which will be made in the real world is called the 'physical model', and the one which is used for simulation is called the 'constructive model’.


 物理的なシステムは、骨格はレーザーカットされたMDF、伸縮性のある布でできた膜、形状記憶合金、マイコンArduino(バンジ等、2005〜)への電気配線で構成されている。一方、コンピュータの画面上に見える仮想モデルは「コンストラクティブ・モデル」と呼ばれ、コンピュータプログラム;プロセッシング上で物理エンジンを使って動作する。これはシステムの非物理的な部分をつかさどり、制御部分やシミュレーション部分のモデルを表現する。コーネル大学のホッド・リプソンも、デュアルモデルシステムについて似たようなビジョンを持っている。彼は、2つの部分を「ロボット」と「意識」と呼んだ (リプソンソン、ポラック, 2000)。このハイブリッドモデルの考えは、シミュレーションを使用する工学や複雑系科学では目新しいものではなかもしれない。ともあれ、本論文では実世界で作られるモデルを「物理モデル」、シミュレーションに使用されるモデルを「コンストラクティブ・モデル」と呼ぶ。

     In the traditional architectural field, the relation between a 'physical model' and a 'constructive model' corresponds to the relationship between a building and its blueprint. However, with the recent computational enhancement of the 'constructive model', the new field is now evolving from there. For example, the blueprint was no more than an 'idea' of the building. The computational model in PA, however, is not just an idea. Thanks to the computer’s program and physical engines, it works as an autonomous system which works beyond human ideas and planning. Furthermore, if this robotic 'physical model' and 'constructive model' communicate as they do in PA, the definition of and boundary between real and virtual are going to change. 


     For example, when the structure needs to change, the constructive model executes the calculations in the computer, and when the optimum answer is attained it will be output to the physical model reducing the interaction time to a moment when the output is passed to the physical model. Then the physical model- the big roof-implements the necessary deformation. This effectively saves time and energy as it does not execute physically until a good answer is calculated in the constructive model. This difference in nature between the physical model and simulated constructive model can be used in many situations to allow complex scenarios to be implemented with a minimum of time and energy. 


Fig.4-8,1 The correspondence between simulation (construction model) and robot (physical model)Those pictures are from the video of the experiment, which connects a simulated model and a physical model. The connection between the two models is through Microcontroller. Technically, data goes through Grasshopper, Firefly, Serial USB, Arduino, and Actuators.
図.4-8,1 シミュレーション(コンストラクション・モデル)とロボット(物理モデル、模型)の対応関係これらの写真は、シミュレーションモデルと物理モデルを接続した実験のビデオからのキャプチャである。2つのモデルの接続は、マイコンを通して行われる。技術的には、Grasshopper、Firefly、シリアルUSB、Arduino、アクチュエータを経由してデータが送られる。

4-9. Conclusion

This chapter has described the concept of PA, and the discussion raises the most critical issue as the method for mediating conflicts. Even though the physical design may take an alternative approach to the proposed tensegrity design, this conflict between 

・One global input (environment input A) and another global input(environmental input B), 

・One global input(environment input) and a local input (input from a user), 

・One local input (input from person A), another local input(input from person B) might still happen. 

The successful resolution of these conflicting inputs is a crucial aspect of PA. With its physical and virtual models and three levels of hierarchy, the use of PA allows it to mediate the multiple inputs from users and the environment to create a functionally flexible environment for its users.

4-9. 結論